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Statistics as a Random Game?

Nature and a statistician decide to play a game. What’s in the box?

A family of distributions F, usually assumed to admit densities
(frequencies). This is the variant of the game we decide to play.

A parameter space Θ ⊆ Rp which parametrizes the family
F = {Fθ}θ∈Θ. This represents the space of possible
plays/moves available to Nature.

A data space X , on which the parametric family is supported. This
represents the space of possible outcomes following a play by Nature.

An action space A, which represents the space of possible actions or
decisions or plays/moves available to the statistician.

A loss function L : Θ×A → R+. This represents how much
the statistician has to pay nature when losing.

A set D of decision rules. Any δ ∈ D is a (measurable) function
δ : X → A. These represent the possible strategies available to the
statistician.
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Statistics as a Random Game?

How the game is played:

First we agree on the rules:
1 Fix a parametric family {Fθ}θ∈Θ

2 Fix an action space A
3 Fix a loss function L

Then we play:
1 Nature selects (plays) θ0 ∈ Θ.
2 The statistician observes X ∼ Fθ0

3 The statistician plays α ∈ A in response.
4 The statistician has to pay nature L(θ0, α).

Framework proposed by A. Wald in 1939. Encompasses three basic
statistical problems:

Point estimation

Hypothesis testing

Interval estimation
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Point Estimation as a Game

In the problem of point estimation we have:

1 Fixed parametric family {Fθ}θ∈Θ

2 Fixed an action space A = Θ

3 Fixed loss function L(θ, α) (e.g. ‖θ − α‖2)

The game now evolves simply as:

1 Nature picks θ0 ∈ Θ

2 The statistician observes X ∼ Fθ0

3 The statistician plays δ(X ) ∈ A = Θ

4 The statistician loses L(θ0, δ(X ))

Notice that in this setup δ is an estimator (it is a statistic X → Θ).

The statistician always loses.
↪→ Is there a good strategy δ ∈ D for the statistician to restrict his losses?
↪→ Is there an optimal strategy?

Statistical Theory Decision Theory 5 / 24

Risk of a Decision Rule

Statistician would like to pick strategy δ so as to minimize his losses.
But losses are random, as they depend on X .

Definition (Risk)

Given a parameter θ ∈ Θ, the risk of a decision rule δ : X → A is the
expected loss incurred when employing δ: R(θ, δ) = Eθ [L(θ, δ(X ))] .

Key notion of decision theory

decision rules should be compared by comparing their risk functions

Example (Mean Squared Error)

In point estimation, the mean squared error

MSE (δ(X )) = Eθ[‖θ − δ(X )‖2]

is the risk corresponding to a squared error loss function.

Statistical Theory Decision Theory 6 / 24

Coin Tossing Revisited

Consider the “coin tossing game” with quadratic loss:

Nature picks θ ∈ [0, 1]

We observe n variables Xi
iid∼ Bernoulli(θ).

Action space is A = [0, 1]

Loss function is L(θ, α) = (θ − α)2.

Consider 3 different decision procedures {δj}3
j=1:

1 δ1(X ) = 1
n

∑n
i=1 Xi

2 δ2(X ) = X1

3 δ3(X ) = 1
2

Let us compare these using their associated risks as benchmarks.
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Coin Tossing Revisited

Risks associated with different decision rules:

Rj(θ) = R(θ, δj(X )) = Eθ[(θ − δj(X ))2]

R1(θ) = 1
nθ(1− θ)

R2(θ) = θ(1− θ)

R3(θ) =
(
θ − 1

2

)2
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Coin Tossing Revisited
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Risk of a Decision Rule

Saw that decision rule may strictly dominate another rule (R2(θ)>R1(θ)).

Definition (Inadmissible Decision Rule)

Let δ be a decision rule for the experiment ({Fθ}θ∈Θ,L). If there exists a
decision rule δ∗ that strictly dominates δ, i.e.

R(θ, δ∗) ≤ R(θ, δ), ∀θ ∈ Θ & ∃ θ′ ∈ Θ : R(θ′, δ∗) < R(θ′, δ),

then δ is called an inadmissible decision rule.

An inadmissible decision rule is a “silly” strategy since we can find a
strategy that always does at least as well and sometimes better.

However “silly” is with respect to L and Θ. (it may be that our
choice of L is “silly”!!!)

If we change the rules of the game (i.e. different loss or different
parameter space) then domination may break down.
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Risk of a Decision Rule

Example (Exponential Distribution)

Let X1, ...,Xn
iid∼ Exponential(λ), n ≥ 2. The MLE of λ is

λ̂ =
1

X̄

with X̄ the empirical mean. Observe that

Eλ[λ̂] =
nλ

n − 1
.

It follows that λ̃ = (n − 1)λ̂/n is an unbiased estimator of λ. Observe now
that

MSEλ(λ̃) < MSEλ(λ̂)

since λ̃ is unbiased and Varλ(λ̃) < Varλ(λ̂). Hence the MLE is an
inadmissible rule for quadratic loss.
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Risk of a Decision Rule

Example (Exponential Distribution)

Notice that the parameter space in this example is (0,∞). In such cases, quadratic loss

tends to penalize over-estimation more heavily than under-estimation (the maximum

possible under-estimation is bounded!). Different loss function gives the opposite result!

L(a, b) = a/b − 1− log(a/b)

where, for each fixed a, limb→0L(a, b) = limb→∞L(a, b) = ∞. Now, for n > 1,

R(λ, λ̃) = Eλ
[
nλX̄

n − 1
− 1− log

(
nλX̄

n − 1

)]

= Eλ
[
λX̄ − 1− log(λX̄ )

]
︸ ︷︷ ︸

R(λ,λ̂)

+
Eλ(λX̄ )

n − 1
− log

(
n

n − 1

)

︸ ︷︷ ︸
g(n)

where we wrote X̄ = n−1
n

X̄ + 1
n
X̄ .
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Example (Exponential Distribution)

Note that Eλ[X̄ ] = λ−1, so

g(n) =
1

n − 1
− log

(
n

n − 1

)
.

We claim that g(n) > 0 for n ≥ 2. Using log x =
∫ x

1 t−1dt, this follows if

1

x
> log(x + 1)− log x , x > 1

⇐⇒ 1

x
>

∫ x+1

x
t−1dt, x > 1

which holds by a rectangle area bound on the integral, as follows:

1

x
= [(x + 1)− x ]

1

x
=

∫ x+1

x

1

x
dt >

∫ x+1

x

1

t
dt, when x > 1

Consequently, R(λ, λ̃) > R(λ, λ̂) and λ̂ dominates λ̂.
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Criteria for Choosing Decision Rules

Definition (Admissible Decision Rule)

A decision rule δ is admissible for the experiment ({Fθ}θ∈Θ,L) if it is not
strictly dominated by any other decision rule.

In non-trivial problems, it may not be easy at all to decide whether a
given decision rule is admissible.

Stein’s paradox (“one of the most striking post-war results in
mathematical statistics”-Brad Efron)

Admissibility is a minimal requirement - what about the opposite end
(optimality) ?

In almost any non-trivial experiment, there will be no decision rule
that makes risk uniformly smallest over θ

Narrow down class of possible decision rules by
unbiasedness/symmetry/... considerations, and try to find uniformly
dominating rules of all other rules (next week!).
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Minimax Decision Rules

Another approach to good procedures is to use global rather than
local criteria (with respect to θ).

Rather than look at risk at every θ ↔ Concentrate on maximum risk

Definition (Minimax Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L). If
δ ∈ D is such that

sup
θ∈Θ

R(θ, δ) ≤ sup
θ∈Θ

R(θ, δ′), ∀ δ′ ∈ D,

then δ is called a minimax decision rule.

A minimax rule δ satisfies supθ∈ΘR(θ, δ) = infκ∈D supθ∈Θ R(θ, κ).

In the minimax setup, a rule is preferable to another if it has smaller
maximum risk.
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Minimax Decision Rules

A few comments on minimaxity:

Motivated as follows: we do not know anything about θ so let us
insure ourselves against the worst thing that can happen.

Makes sense if you are in a zero-sum game: if your opponent chooses
θ to maximize L then one should look for minimax rules. But is
nature really an opponent?

If there is no reason to believe that nature is trying to “do her worst”,
then the minimax principle is overly conservative: it places emphasis
on the “bad θ”.

Minimax rules may not be unique, and may not even be admissible. A
minimax rule may very well dominate another minimax rule.

A unique minimax rule is (obviously) admissible.

Minimaxity can lead to counterintuitive results. A rule may dominate
another rule, except for a small region in Θ, where the other rule
achieves a smaller supremum risk.
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Minimax Decision Rules

Inadmissible minimax rule
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Bayes Decision Rules

Wanted to compare decision procedures using global rather than local
criteria (with respect to θ).

We arrived at the minimax principle by assuming we have no idea
about the true value of θ.

Suppose we have some prior belief about the value of θ. How can this
be factored in our risk-based considerations?

Rather than look at risk at every θ ↔ Concentrate on average risk

Definition (Bayes Risk)

Let π(θ) be a probability density (frequency) on Θ and let δ be a decision
rule for the experiment ({Fθ}θ∈Θ,L). The π-Bayes risk of δ is defined as

r(π, δ) =

∫

Θ
R(θ, δ)π(θ)dθ =

∫

Θ

∫

X
L(θ, δ(x))Fθ[dx ]π(θ)dθ

The prior π(θ) places different emphasis for different values of θ based on
our prior belief/knowedge.
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Bayes Decision Rules

Bayes principle: a decision rule is preferable to another if it has
smaller Bayes risk (depends on the prior π(θ)!).

Definition (Bayes Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L) and let
π(·) be a probability density (frequency) on Θ. If δ ∈ D is such that

r(π, δ) ≤ r(π, δ′) ∀ δ′ ∈ D,

then δ is called a Bayes decision rule with respect to π.

The minimax principle aims to minimize the maximum risk.

The Bayes principle aims to minimize the average risk

Sometime no Bayes rule exist becaise the infimum may not be
attained for any δ ∈ D. However in such cases ∀ε > 0 ∃δε ∈ D:
r(π, δε) < infδ∈D r(π, δ) + ε.
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Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that Θ = {θ1, ..., θt} is a finite space and that the prior π(θi ) > 0,
i = 1, ..., t. Then a Bayes rule with respect to π is admissible.

Proof.

Let δ be a Bayes rule, and suppose that κ strictly dominates δ. Then

R(θj , κ) ≤ R(θj , δ), ∀j
R(θj , κ)π(θj) ≤ R(θj , δ)π(θj), ∀θ ∈ Θ∑

j

R(θj , κ)π(θj) <
∑

j

R(θ, δ)π(θj)

which is a contradiction (strict inequality follows by strict domination and
the fact that π(θj) is always positive).
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Admissibility of Bayes Rules

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof.

Suppose that δ is a unique Bayes rule and assume that κ strictly
dominates it. Then,

∫

Θ
R(θ, κ)π(θ)dθ ≤

∫

Θ
R(θ, δ)π(θ)dθ.

as a result of strict domination and by π(θ) being non-negative. This
implies that κ either improves upon δ, or κ is a Bayes rule. Either
possibility contradicts our assumption.
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Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let Θ ⊂ Rd . Assume that the risk functions R(θ, δ) are continuous in θ
for all decision rules δ ∈ D. Suppose that π places positive mass on any
open subset of Θ. Then a Bayes rule with respect to π is admissible.

Proof.

Let κ be a decision rule that strictly dominates δ. Let Θ0 be the set on
which R(θ, κ) < R(θ, δ). Given a θ0 ∈ Θ0, we have R(θ0, κ) < R(θ0, δ).
By continuity, there must exist an ε > 0 such that R(θ, κ) < R(θ, δ) for all
theta satisfying ‖θ − θ0‖ < ε. It follows that Θ0 is open and hence, by our
assumption, π[Θ0] > 0. Therefore, it must be that

∫

Θ0

R(θ, κ)π(θ)dθ <

∫

Θ0

R(θ, δ)π(θ)dθ
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Admissibility of Bayes Rules

Observe now that

r(π, κ) =

∫

Θ
R(θ, κ)π(θ)dθ

=

∫

Θ0

R(θ, κ)π(θ)dθ +

∫

Θc
0

R(θ, κ)π(θ)dθ

<

∫

Θ0

R(θ, δ)π(θ)dθ +

∫

Θc
0

R(θ, δ)π(θ)dθ

= r(π, δ),

since
∫

Θc
0
R(θ, κ)π(θ)dθ ≤

∫
Θc

0
R(θ, δ)π(θ)dθ, while we have strict

inequality on Θ0, contradicting our assumption that δ is a Bayes rule.

The continuity assumption and the assumption on π ensure that Θ0

is not an isolated set, and has positive measure, so that it
“contributes” to the integral.
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Randomised Decision Rules

Given

decision rules δ1, ..., δk

probabilities πi ≥ 0,
∑k

i=1 pi = 1

we may define a new decision rule

δ∗ =
k∑

i=1

piδi

called a randomised decision rule. Interpretation:

Given data X , choose a δi randomly according to p but independent of X .
If δj is the outcome (1 ≤ j ≤ k), then take action δj(X ).

→ Risk of δ∗ is average risk: R(θ, δ∗) =
∑k

i=1 piR(θ, δi )

Appears artificial but often minimax rules are randomised

Examples of randomised rules with supθ R(θ, δ∗) < supθ R(θ, δi )∀i
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