

						2.40
Statistical Theory	Decision Theory	1 / 24	Statistical Theory	Decision Theory	2	/ 24
Statistics as a Rand	dom Game?		Statistics as a Random Game?			
Nature and a statisticiar	n decide to play a game. V	What's in the box?	How the same is played			

• A *family of distributions* \mathcal{F} , usually assumed to admit densities (frequencies). This is the variant of the game we decide to play.

- A parameter space $\Theta \subset \mathbb{R}^p$ which parametrizes the family $\mathcal{F} = \{F_{\theta}\}_{\theta \in \Theta}$. This represents the space of possible plays/moves available to Nature.
- A *data space* \mathcal{X} , on which the parametric family is supported. This represents the space of possible outcomes following a play by Nature.
- An action space A, which represents the space of possible actions or decisions or plays/moves available to the statistician.
- A *loss function* $\mathcal{L} : \Theta \times \mathcal{A} \to \mathbb{R}^+$. This represents <u>how much</u> the statistician has to pay nature when losing.

Statistical Theory

• A set \mathcal{D} of *decision rules*. Any $\delta \in \mathcal{D}$ is a (measurable) function $\delta: \mathcal{X} \to \mathcal{A}$. These represent the possible strategies available to the statistician.

Decision Theory

How the game is played:

- First we agree on the rules:
 - **1** Fix a parametric family $\{F_{\theta}\}_{\theta \in \Theta}$
 - **2** Fix an action space \mathcal{A}
 - **③** Fix a loss function \mathcal{L}
- Then we play:
 - **1** Nature selects (plays) $\theta_0 \in \Theta$.
 - **2** The statistician observes $X \sim F_{\theta_0}$
 - **3** The statistician plays $\alpha \in \mathcal{A}$ in response.
 - **4** The statistician has to pay nature $\mathcal{L}(\theta_0, \alpha)$.

Framework proposed by A. Wald in 1939. Encompasses three basic statistical problems:

- Point estimation
- Hypothesis testing
- Interval estimation

2 / 24 Chatiat	tical Theorem Desision The	
		《 ㅁ ▷ 《 쿱 ▷ 《 큰 ▷ 《 큰 ▷ ' 큰 '')

Point Estimation as a Game

In the problem of point estimation we have: • Eixed parametric family $\{F_n\}_{n=0}$			Statistician would like to But losses are random, a	o pick strategy δ so as to n as they depend on $X.$	ninimize his losses.
 Fixed an action sna 	 Fixed an action space \$\mathcal{A} = \Theta\$ Fixed loss function \$\mathcal{L}(\theta, \alpha)\$ (e.g. \$\$\ \theta - \alpha\ ^2\$)\$ 		Definition (Risk)		
Fixed loss function			Given a parameter $\theta \in \mathfrak{G}$ expected loss incurred w	Θ , the <i>risk</i> of a decision rul when employing δ : $R(heta, \delta)$ =	$egin{array}{l} { m e} \; \delta : {\mathcal X} ightarrow {\mathcal A} \; { m is \; the} \ = {\mathbb E}_{ heta} \left[{\mathcal L}(heta, \delta({\mathcal X})) ight]. \end{array}$
The game now evolves s	imply as:				
• Nature picks $ heta_0 \in \Theta$			Key notion of decision theory		
② The statistician observes $X \sim F_{ heta_0}$			decision rules should be compared by comparing their risk functions		
3 The statistician plays $\delta(X)\in \mathcal{A}=\Theta$					
• The statistician loses $\mathcal{L}(heta_0,\delta(X))$			Example (Mean Squar	ed Error)	
Notice that in this setup δ is an <i>estimator</i> (it is a statistic $\mathcal{X} \to \Theta$).			In point estimation, the mean squared error		
The statistician always loses. \hookrightarrow Is there a good strategy $\delta \in \mathcal{D}$ for the statistician to <u>restrict his losses</u> ?			$\textit{MSE}(\delta(X)) = \mathbb{E}_{ heta}[\ heta - \delta(X)\ ^2]$		²]
\hookrightarrow Is there an optimal strategy?		is the risk corresponding to a squared error loss function.			
<ロ> <局> <長> <長> <長> <長> <し>					
Statistical Theory	Decision Theory	5 / 24	Statistical Theory	Decision Theory	6 /
Coin Tossing Revisited			Coin Tossing Revis	ited	

Coin Tossing Revisited

Consider the "coin tossing game" with quadratic loss:

- Nature picks $\theta \in [0, 1]$
- We observe *n* variables $X_i \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$.
- Action space is $\mathcal{A} = [0, 1]$
- Loss function is $\mathcal{L}(\theta, \alpha) = (\theta \alpha)^2$.

Consider 3 different decision procedures $\{\delta_j\}_{j=1}^3$:

$$\bullet \ \delta_1(X) = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\delta_2(X) = X_1$$

3
$$\delta_3(X) = \frac{1}{2}$$

Statistical 7

Let us compare these using their associated risks as benchmarks.

Risks associated with different decision rules:

$$R_j(\theta) = R(\theta, \delta_j(X)) = \mathbb{E}_{\theta}[(\theta - \delta_j(X))^2]$$

•
$$R_1(\theta) = \frac{1}{n}\theta(1-\theta)$$

Risk of a Decision Rule

•
$$R_2(\theta) = \theta(1-\theta)$$

•
$$R_3(\theta) = \left(\theta - \frac{1}{2}\right)^2$$

	< [4	しゃ 小田・ 小田・ 小田・ うくの
Theory	Decision Theory	7 / 24	Statistical Theory	Decision Theory	8 / 24

Coin Tossing Revisited

Risk of a Decision Rule

Statistical Theory

Example (Exponential Distribution)

Let
$$X_1, ..., X_n \stackrel{iid}{\sim} \mathsf{Exponential}(\lambda), n \ge 2$$
. The MLE of λ is

$$\hat{\lambda} = \frac{1}{\bar{X}}$$

Decision Theory

with \bar{X} the empirical mean. Observe that

$$\mathbb{E}_{\lambda}[\hat{\lambda}] = \frac{n\lambda}{n-1}.$$

It follows that $\tilde{\lambda} = (n-1)\hat{\lambda}/n$ is an unbiased estimator of λ . Observe now that

$$\mathsf{MSE}_\lambda(ilde\lambda) < \mathsf{MSE}_\lambda(\hat\lambda)$$

since $\tilde{\lambda}$ is unbiased and $\operatorname{Var}_{\lambda}(\tilde{\lambda}) < \operatorname{Var}_{\lambda}(\hat{\lambda})$. Hence the MLE is an inadmissible rule for quadratic loss.

Statistical Theory	Decision Theory

Risk of a Decision Rule

Saw that decision rule may strictly *dominate* another rule $(R_2(\theta) > R_1(\theta))$.

Definition (Inadmissible Decision Rule)

Let δ be a decision rule for the experiment ({ F_{θ} } $_{\theta \in \Theta}$, \mathcal{L}). If there exists a decision rule δ^* that strictly dominates δ , i.e.

 $R(heta, \delta^*) \leq R(heta, \delta), \; orall heta \in \Theta \quad \& \quad \exists \; heta' \in \Theta : R(heta', \delta^*) < R(heta', \delta),$

then δ is called an *inadmissible decision rule*.

- An inadmissible decision rule is a "silly" strategy since we can find a strategy that always does at least as well and sometimes better.
- However "silly" is with respect to L and Θ. (it may be that our choice of L is "silly"!!!)
- If we change the rules of the game (i.e. different loss or different parameter space) then domination may break down.

Risk of a Decision Rule

Example (Exponential Distribution)

Notice that the parameter space in this example is $(0, \infty)$. In such cases, quadratic loss tends to penalize over-estimation more heavily than under-estimation (the maximum possible under-estimation is bounded!). Different loss function gives the opposite result!

$$\mathcal{L}(a,b) = a/b - 1 - \log(a/b)$$

where, for each fixed a, $lim_{b\to 0}\mathcal{L}(a,b) = lim_{b\to \infty}\mathcal{L}(a,b) = \infty$. Now, for n > 1,

$$R(\lambda, \tilde{\lambda}) = \mathbb{E}_{\lambda} \left[\frac{n\lambda \bar{X}}{n-1} - 1 - \log\left(\frac{n\lambda \bar{X}}{n-1}\right) \right]$$
$$= \underbrace{\mathbb{E}_{\lambda} \left[\lambda \bar{X} - 1 - \log(\lambda \bar{X}) \right]}_{R(\lambda, \hat{\lambda})} + \underbrace{\frac{\mathbb{E}_{\lambda}(\lambda \bar{X})}{n-1} - \log\left(\frac{n}{n-1}\right)}_{g(n)}$$

where we wrote $\bar{X} = \frac{n-1}{n}\bar{X} + \frac{1}{n}\bar{X}$.

Statistical Theory

11 / 24

Decision Theory

12 / 24

Example (Exponential Distribution)

Note that $\mathbb{E}_{\lambda}[\bar{X}] = \lambda^{-1}$, so

$$g(n) = \frac{1}{n-1} - \log\left(\frac{n}{n-1}\right)$$

We claim that g(n) > 0 for $n \ge 2$. Using $\log x = \int_1^x t^{-1} dt$, this follows if

$$egin{array}{rcl} rac{1}{x} &> & \log(x+1) - \log x, \qquad x > 1 \ \Rightarrow & rac{1}{x} &> & \int_x^{x+1} t^{-1} dt, \qquad x > 1 \end{array}$$

which holds by a rectangle area bound on the integral, as follows:

$$\frac{1}{x} = [(x+1) - x]\frac{1}{x} = \int_{x}^{x+1} \frac{1}{x} dt > \int_{x}^{x+1} \frac{1}{t} dt, \text{ when } x > 1$$

Consequently, $R(\lambda, \tilde{\lambda}) > R(\lambda, \hat{\lambda})$ and $\hat{\lambda}$ dominates $\hat{\lambda}$.

Decision Theory

Minimax Decision Rules

 Another approach to good procedures is to use global rather than local criteria (with respect to θ).

Rather than look at risk at every $\theta \leftrightarrow$ Concentrate on maximum risk

Definition (Minimax Decision Rule)

Let \mathcal{D} be a class of decision rules for an experiment $({F_{\theta}}_{\theta \in \Theta}, \mathcal{L})$. If $\delta \in \mathcal{D}$ is such that

$$\sup_{\theta\in\Theta} R(\theta,\delta) \leq \sup_{\theta\in\Theta} R(\theta,\delta'), \quad \forall \ \delta'\in\mathcal{D},$$

then δ is called a minimax decision rule.

- A minimax rule δ satisfies $sup_{\theta \in \Theta} R(\theta, \delta) = \inf_{\kappa \in \mathcal{D}} \sup_{\theta \in \Theta} R(\theta, \kappa)$.
- In the minimax setup, a rule is *preferable* to another if it has smaller maximum risk.

Criteria for Choosing Decision Rules

Definition (Admissible Decision Rule)

A decision rule δ is *admissible* for the experiment $(\{F_{\theta}\}_{\theta \in \Theta}, \mathcal{L})$ if it is not strictly dominated by any other decision rule.

- In non-trivial problems, it may not be easy at all to decide whether a given decision rule is admissible.
- Stein's paradox ("one of the most striking post-war results in mathematical statistics"-Brad Efron)

Admissibility is a minimal requirement - what about the opposite end (optimality) ?

- In almost any non-trivial experiment, there will be no decision rule that makes risk uniformly smallest over θ
- Narrow down class of possible decision rules by unbiasedness/symmetry/... considerations, and try to find *uniformly dominating* rules of all other rules (next week!).

Decision Theory

14 / 24

Minimax Decision Rules

Statistical Theory

A few comments on minimaxity:

- Motivated as follows: we do not know anything about θ so let us insure ourselves against the worst thing that can happen.
- Makes sense if you are in a zero-sum game: if your opponent chooses θ to maximize L then one should look for minimax rules. But is nature really an opponent?
- If there is no reason to believe that nature is trying to "do her worst", then the minimax principle is overly conservative: it places emphasis on the "bad θ ".
- Minimax rules may not be unique, and may not even be admissible. A minimax rule may very well dominate another minimax rule.
- A unique minimax rule is (obviously) admissible.
- Minimaxity can lead to counterintuitive results. A rule may dominate another rule, except for a small region in Θ, where the other rule achieves a smaller supremum risk.

Statistical Theory	Decision Theory	15 / 24	Statistical Theory	Decision Theory	16 / 24

13 / 24

Inadmissible minimax rule

Counterintuitive minimax rule

Bayes Decision Rules

• Bayes principle: a decision rule is *preferable* to another if it has smaller Bayes risk (depends on the prior $\pi(\theta)$!).

Definition (Bayes Decision Rule)

Let \mathcal{D} be a class of decision rules for an experiment $({F_{\theta}}_{\theta \in \Theta}, \mathcal{L})$ and let $\pi(\cdot)$ be a probability density (frequency) on Θ . If $\delta \in \mathcal{D}$ is such that

 $r(\pi,\delta) \leq r(\pi,\delta') \quad \forall \ \delta' \in \mathcal{D},$

then δ is called a *Bayes decision rule* with respect to π .

- The minimax principle aims to minimize the maximum risk.
- The Bayes principle aims to minimize the average risk
- Sometime no Bayes rule exist becaise the infimum may not be attained for any δ ∈ D. However in such cases ∀ε > 0 ∃δε ∈ D: r(π, δε) < inf_{δ∈D} r(π, δ) + ε.

	D · ·	
Kaves	Decision	Rules
Duyes	Decision	Traics

- Wanted to compare decision procedures using global rather than local criteria (with respect to θ).
- We arrived at the minimax principle by assuming we have no idea about the true value of θ .
- Suppose we have some prior belief about the value of *θ*. How can this be factored in our risk-based considerations?

Rather than look at risk at every $\theta \leftrightarrow \mathsf{Concentrate}$ on average risk

Definition (Bayes Risk)

Statistical Theory

Let $\pi(\theta)$ be a probability density (frequency) on Θ and let δ be a decision rule for the experiment $(\{F_{\theta}\}_{\theta\in\Theta}, \mathcal{L})$. The π -Bayes risk of δ is defined as

$$r(\pi,\delta) = \int_{\Theta} R(\theta,\delta)\pi(\theta)d\theta = \int_{\Theta} \int_{\mathcal{X}} \mathcal{L}(\theta,\delta(x))F_{\theta}[dx]\pi(\theta)d\theta$$

The prior $\pi(\theta)$ places different emphasis for different values of θ based on our prior belief/knowedge.

18 / 24

20 / 24

Decision Theory

Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that $\Theta = \{\theta_1, ..., \theta_t\}$ is a finite space and that the prior $\pi(\theta_i) > 0$, i = 1, ..., t. Then a Bayes rule with respect to π is admissible.

Proof.

Let δ be a Bayes rule, and suppose that κ strictly dominates $\delta.$ Then

$$egin{aligned} & R(heta_j,\kappa) &\leq & R(heta_j,\delta), \quad orall j \ & R(heta_j,\kappa)\pi(heta_j) &\leq & R(heta_j,\delta)\pi(heta_j), \quad orall heta \in \Theta \ & \sum_j R(heta_j,\kappa)\pi(heta_j) &< & \sum_j R(heta,\delta)\pi(heta_j) \end{aligned}$$

which is a contradiction (strict inequality follows by strict domination and the fact that $\pi(\theta_j)$ is always positive).

C		40	1.0.1	a	- · · ·	
	()	ロト・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・	200			

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof.

Suppose that δ is a unique Bayes rule and assume that κ strictly dominates it. Then,

$$\int_{\Theta} R(\theta,\kappa) \pi(\theta) d\theta \leq \int_{\Theta} R(\theta,\delta) \pi(\theta) d\theta.$$

as a result of strict domination and by $\pi(\theta)$ being non-negative. This implies that κ either improves upon δ , or κ is a Bayes rule. Either possibility contradicts our assumption.

Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let $\Theta \subset \mathbb{R}^d$. Assume that the risk functions $R(\theta, \delta)$ are continuous in θ for all decision rules $\delta \in \mathcal{D}$. Suppose that π places positive mass on any open subset of Θ . Then a Bayes rule with respect to π is admissible.

Proof.

Let κ be a decision rule that strictly dominates δ . Let Θ_0 be the set on which $R(\theta, \kappa) < R(\theta, \delta)$. Given a $\theta_0 \in \Theta_0$, we have $R(\theta_0, \kappa) < R(\theta_0, \delta)$. By continuity, there must exist an $\epsilon > 0$ such that $R(\theta, \kappa) < R(\theta, \delta)$ for all theta satisfying $\|\theta - \theta_0\| < \epsilon$. It follows that Θ_0 is open and hence, by our assumption, $\pi[\Theta_0] > 0$. Therefore, it must be that

$$\int_{\Theta_0} R(heta,\kappa) \pi(heta) d heta < \int_{\Theta_0} R(heta,\delta) \pi(heta) d heta$$

Statistical Theory

statistical	Theory

Decision Theory

23 / 24

Decision Theory

24 / 24

590