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Statistics as a Random Game? Statistics as a Random Game?

Nature and a statistician decide to play a game. What's in the box?

How the game is played:

e A family of distributions &, usually assumed to admit densities e First we agree on the rules:
(frequencies). This is the variant of the game we decide to play. © Fix a parametric family {Fs}oco
@ A parameter space © C RP which parametrizes the family © Fix an action space A
F = {Fg}oco. This represents the space of possible © Fix a loss function £
plays/moves available to Nature. @ Then we play:

© Nature selects (plays) 6p € ©.
© The statistician observes X ~ Fg,

] - _ ] © The statistician plays a € A in response.
@ An action space A, which represents the space of possible actions or O The statistician has to pay nature £(6p, ).

decisions or plays/moves available to the statistician.

@ A data space X', on which the parametric family is supported. This
represents the space of possible outcomes following a play by Nature.

Framework proposed by A. Wald in 1939. Encompasses three basic

@ A loss function L : © x A — R™. This represents how much statistical problems:

the statistician has to pay nature when losing.

. . . @ Point estimation
@ A set D of decision rules. Any § € D is a (measurable) function

0 : X — A. These represent the possible strategies available to the
statistician. @ Interval estimation

@ Hypothesis testing
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Point Estimation as a Game Risk of a Decision Rule

: o Statistician would like to pick strategy 0 so as to minimize his losses.
In the problem of point estimation we have:

But losses are random, as they depend on X.
© Fixed parametric family {Fy}gco

@ Fixed an action space A = © Definition (Risk)
© Fixed loss function £(6,a) (e.g. ||6 — a”g) Given a parameter 8 € ©, the risk of a decision rule § : X — A is the
The game now evolves simp;y as: expected loss incurred when employing 0: R(6,0) = Eq [L£(0,(X))] -

© Nature picks p € ©

© The statistician observes X ~ Fy, decision rules should be compared by comparing their risk functions
© The statistician plays §(X) € A=0 ’

© The statisiian lses (6 5(3) Bonple (Mean Squared Evo)

Notice that in this setup 0 is an estimator (it is a statistic X — ©). In point estimation, the mean squared error
The statistician always loses.

_ 2
— Is there a good strategy 6 € D for the statistician to restrict his losses? MSE(3(X)) = Eoll|6 — 6(X)|I"]
< Is there an optimal strategy?

Key notion of decision theory

is the risk corresponding to a squared error loss function.
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Coin Tossing Revisited Coin Tossing Revisited

Consider the “coin tossing game” with quadratic loss:

e Nature picks 6 € [0, 1] Risks associated with different decision rules:

. iid .
@ We observe n variables X; ~ Bernoulli(#).

R:(0) = R(0,6:(X)) = Eg[(8 — 6:(X))?
@ Action space is A = [0, 1] () (6,0;(X)) oll i(X))]
e Loss function is £(6,a) = (0 — ).

® Ri(0) =16(1—0)
Consider 3 different decision procedures {51-}]3:1:

0 5(X)= 12X o Ry(0) =0(1—0)
Q 0(X) =X
0 55(X) =1

Let us compare these using their associated risks as benchmarks.
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Coin Tossing Revisited
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Risk of a Decision Rule

Let X1,..., Xp X Exponential(\), n > 2. The MLE of X is

i
X

with X the empirical mean. Observe that

n\

Ex[A] = —

It follows that A = (n — 1)A/n is an unbiased estimator of X. Observe now
that

MSE(X) < MSEx(})

since A is unbiased and Vary () < Vary(}). Hence the MLE is an
inadmissible rule for quadratic loss.
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Risk of a Decision Rule

Saw that decision rule may strictly dominate another rule (Ry(0)>R(6)).

Definition (Inadmissible Decision Rule)

Let ¢ be a decision rule for the experiment ({Fy}gco, L£). If there exists a
decision rule 0* that strictly dominates 9, i.e.

R(6,5%) < R(6,5), V0 c© & 3¢ c0O:R(0,5)<R(®,9),

then ¢ is called an inadmissible decision rule.

@ An inadmissible decision rule is a “silly” strategy since we can find a
strategy that always does at least as well and sometimes better.

@ However “silly” is with respect to £ and ©. (it may be that our
choice of L is “silly” !!l)

@ If we change the rules of the game (i.e. different loss or different
parameter space) then domination may break down.
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Risk of a Decision Rule

Notice that the parameter space in this example is (0, 00). In such cases, quadratic loss
tends to penalize over-estimation more heavily than under-estimation (the maximum

possible under-estimation is bounded!). Different loss function gives the opposite result!

L(a,b) =a/b—1—log(a/b)

where, for each fixed a, limp—0L(a, b) = limp—,ocL(a, b) = co. Now, for n > 1,

where we wrote X = =1 X + 1X.
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Note that Ey[X] = A7, so

g(n)=ﬁ—log<ni1)-

We claim that g(n) > 0 for n > 2. Using logx = [, t~'dt, this follows if

> log(x + 1) — log x, x>1

x+1
> / t~tdt, x>1
X

which holds by a rectangle area bound on the integral, as follows:

<~

X|—= X |

1 1 x+1 1 x+1 1
—:[(x-l-l)—x]—:/ —dt>/ —dt, when x>1
X X % X % t

Consequently, R(A,A) > R(A, ) and X dominates .
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Minimax Decision Rules

@ Another approach to good procedures is to use global rather than
local criteria (with respect to ).

Rather than look at risk at every 6 <> Concentrate on maximum risk

Definition (Minimax Decision Rule)

Let D be a class of decision rules for an experiment ({Fg}oco, L). If
0 € D is such that

sup R(0,0) < sup R(0,9'),
6cO 0€©

V& €D,

then ¢ is called a minimax decision rule.

@ A minimax rule § satisfies supgceR(8,0) = inf.cp supgeg R(6, ).

@ In the minimax setup, a rule is preferable to another if it has smaller
maximum risk.
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Criteria for Choosing Decision Rules

Definition (Admissible Decision Rule)

A decision rule § is admissible for the experiment ({Fy}oco, £) if it is not
strictly dominated by any other decision rule.

@ In non-trivial problems, it may not be easy at all to decide whether a
given decision rule is admissible.

@ Stein's paradox (“one of the most striking post-war results in
mathematical statistics”-Brad Efron)

Admissibility is a minimal requirement - what about the opposite end
(optimality) ?

@ In almost any non-trivial experiment, there will be no decision rule
that makes risk uniformly smallest over 6

@ Narrow down class of possible decision rules by
unbiasedness/symmetry/... considerations, and try to find uniformly
dominating rules of all other rules (next week!).
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Minimax Decision Rules

A few comments on minimaxity:

@ Motivated as follows: we do not know anything about 6 so let us
insure ourselves against the worst thing that can happen.

@ Makes sense if you are in a zero-sum game: if your opponent chooses
6 to maximize L then one should look for minimax rules. But is
nature really an opponent?

@ If there is no reason to believe that nature is trying to “do her worst”,
then the minimax principle is overly conservative: it places emphasis
on the “bad #".

@ Minimax rules may not be unique, and may not even be admissible. A
minimax rule may very well dominate another minimax rule.

@ A unique minimax rule is (obviously) admissible.

@ Minimaxity can lead to counterintuitive results. A rule may dominate
another rule, except for a small region in ©, where the other rule
achieves a smaller supremum risk.
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Minimax Decision Rules
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Bayes Decision Rules

@ Bayes principle: a decision rule is preferable to another if it has
smaller Bayes risk (depends on the prior 7(6)!).

Definition (Bayes Decision Rule)

Let D be a class of decision rules for an experiment ({Fg}oco, L) and let
7(-) be a probability density (frequency) on ©. If 6 € D is such that

r(r,8) < r(m,8') V& €D,

then ¢ is called a Bayes decision rule with respect to .

@ The minimax principle aims to minimize the maximum risk.

@ The Bayes principle aims to minimize the average risk

@ Sometime no Bayes rule exist becaise the infimum may not be
attained for any 6 € D. However in such cases Ve > 0 39, € D:
r(m,d¢) < infsep r(m,d) + e.
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Bayes Decision Rules

@ Wanted to compare decision procedures using global rather than local
criteria (with respect to 0).

@ We arrived at the minimax principle by assuming we have no idea
about the true value of 6.

@ Suppose we have some prior belief about the value of . How can this
be factored in our risk-based considerations?

Rather than look at risk at every 6 <> Concentrate on average risk
Definition (Bayes Risk)

Let m(0) be a probability density (frequency) on © and let § be a decision
rule for the experiment ({Fy}oco,L). The m-Bayes risk of J is defined as

r(m,5) = /@ R(6,6)m(0)do = /@ /X L(0,6(x))Foldx]m(8)do

The prior w(#) places different emphasis for different values of 6 based on
our prior belief/knowedge.
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Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that © = {61, ...,0:} is a finite space and that the prior 7(6;) > 0,
i =1,...,t. Then a Bayes rule with respect to 7 is admissible.

Proof.
Let 0 be a Bayes rule, and suppose that x strictly dominates §. Then

R(Qj,li) < R(ej,(S), ]
R(0;,k)m(6)) < R(6;,6)(6,), Vo€c®©
> RO, m)m(0) < > R(,0)m(6))

which is a contradiction (strict inequality follows by strict domination and
the fact that 7(6;) is always positive). O
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Admissibility of Bayes Rules

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof.

Suppose that § is a unique Bayes rule and assume that « strictly
dominates it. Then,

/ R(6,k)m(0)do < / R(6,6)m(6)d6.

© ©

as a result of strict domination and by () being non-negative. This
implies that x either improves upon 9, or x is a Bayes rule. Either
possibility contradicts our assumption. 1
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Admissibility of Bayes Rules
Observe now that

R(0, k) (6)do

r(m k) =

P

_ / R(0, )7(0)d6 + / R(6, ) (0)d0
o 95

< /(9R(0,5)7T(6)d9+/ec
= r(m,0), 0

R(6,6)m(0)d0

since [oc R(6, k)m(0)df < [oc R(0,6)m(0)d6, while we have strict
0 0
inequality on ©g, contradicting our assumption that ¢ is a Bayes rule. [

@ The continuity assumption and the assumption on 7 ensure that ©g
is not an isolated set, and has positive measure, so that it
“contributes” to the integral.
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Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let © C RY. Assume that the risk functions R(0,6) are continuous in
for all decision rules 6 € D. Suppose that w places positive mass on any
open subset of ©. Then a Bayes rule with respect to 7 is admissible.

Proof.

Let k be a decision rule that strictly dominates . Let ©g be the set on
which R(0, k) < R(6,0). Given a 6y € ©g, we have R(y, k) < R(6o,9).
By continuity, there must exist an € > 0 such that R(6,x) < R(0,¢) for all
theta satisfying ||6 — 0o|| < e. It follows that ©g is open and hence, by our
assumption, w[©g] > 0. Therefore, it must be that

/ R(0, k)m(0)d0 < / R(0, 6)r(0)d0
©o ©o
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Randomised Decision Rules

Given
@ decision rules 41, ..., 0
e probabilities 7; > 0, S5 p; =1

we may define a new decision rule

K
0x = Z pid;
i—1

called a randomised decision rule. Interpretation:

Given data X, choose a §; randomly according to p but independent of X.
If 6; is the outcome (1 < j < k), then take action §;(X).

— Risk of §, is average risk: R(0,0,) = Zf-;l piR(0,6;)
@ Appears artificial but often minimax rules are randomised
@ Examples of randomised rules with supy R(6,6.) < supy R(6,0;)Vi
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